Office of Materials

October 3, 2000 Supersedes October 31, 1995 Matls. IM 452.02

METHOD FOR COMPUTING STRUCTURAL STEEL MASS (WEIGHT)

COMPUTED MASS (WEIGHT)

The engineer will compute the mass (weight) of structural steel on the basis of the following assumptions as to density - kilograms per cubic meter (pounds per cubic foot):

Steel	7850 kg/m ³	(490 lb./ft. ³)
Cast Iron	7210 kg/m ³	(450 lb./ft. ³)

The mass (weight) of rolled shapes and plates will be computed on the basis of their nominal mass (weight) and dimensions as shown in the contract documents, deducting for copes and cuts.

The mass (weight) of welds will be included in the computed mass (weight), assuming the mass (weight) of fillet welds to be used as follows:

MASS OF WELDS*

Size of Weld	Mass per Meter	Size of Weld	Mass per Meter		
<u>mm</u>	kg	mm	kg		
6	0.21	13	0.99		
8	0.38	16	1.51		
10	0.59	19	2.13		

WEIGHT OF WELDS*

Size of Weld	Wt. per Foot	Size of Weld	Wt. per Foot		
<u>in.</u>	lb.	<u>in.</u>	lb.		
1/4	0.16	1/2	0.64		
5/16	0.25	5/8	1.00		
3/8	0.36	3/4	1.44		

^{*} The mass (weight) of welds shown is 1.5 times theoretical mass (weight).

The mass (weight) of heads, nuts, single washers, and threaded stick through of all high strength shop bolts shall be included in the computed mass (weight) on the basis of the following mass (weights):

Weight of ASTM A325 or A490 high strength bolts Heavy hex structural bolts with heavy hex nuts in pounds per 100

Length Under		Diameter of Bolt in Inches							
Head Inches	1/2	5/8	3/4	1/8	1	11//8	11/4	1³/ ₈	11/2
1 1 ¹ / ₄ 1 ¹ / ₂ 1 ³ / ₄	16.5 17.8 19.2 20.5	29.4 31.1 33.1 35.3	47.0 49.6 52.2 55.3	74.4 78.0 81.9	104 109 114	148 154	 197 205	261	333
2 2 ¹ / ₄ 2 ¹ / ₂ 2 ³ / ₄	21.9 23.3 24.7 26.1	37.4 39.8 41.7 43.9	58.4 61.6 64.7 67.8	86.1 90.3 94.6 98.8	119 124 130 135	160 167 174 181	212 220 229 237	270 279 290 300	344 355 366 379
3 3 ¹ / ₄ 3 ¹ / ₂ 3 ³ / ₄	27.4 28.8 30.2 31.6	46.1 48.2 50.4 52.5	70.9 74.0 77.1 80.2	103 107 111 116	141 146 151 157	188 195 202 209	246 255 263 272	310 321 332 342	391 403 416 428
4 4 ¹ / ₄ 4 ¹ / ₂ 4 ³ / ₄	33.0 34.3 35.7 37.1	54.7 56.9 59.0 61.2	83.3 86.4 89.5 92.7	120 124 128 133	162 168 173 179	216 223 230 237	280 289 298 306	353 363 374 384	441 453 465 478
5 5½ 5½ 5¾	38.5 39.9 41.2 42.6	63.3 65.5 67.7 69.8	95.8 98.9 102 105	137 141 146 150	184 190 196 201	244 251 258 265	315 324 332 341	395 405 416 426	490 503 515 527
6 6½ 6½ 6¾	44.0	71.9 74.1 76.3 78.5	108 111 114 118	154 158 163 167	207 212 218 223	272 279 286 293	349 358 367 375	437 447 458 468	540 552 565 577
7 7 ¹ / ₄ 7 ¹ / ₂ 7 ³ / ₄	•••	80.6 82.8 84.9 87.1	121 124 127 130	171 175 179 183	229 234 240 246	300 307 314 321	384 392 401 410	479 489 500 510	589 602 614 626
8 8 ¹ / ₄ 8 ¹ / ₂ 8 ³ / ₄	•••	89.2 	133	187 192 196	251 257 262	328 335 342	418 427 435 444	521 531 542 552	639 651 664 676
9					1		453	563	689
Per inch additional add	5.5	8.6	12.4	16.9	22.1	28.0	34.4	42.5	49.7
For each 100 plain round washers add	2.1	3.6	4.8	7.0	9.4	11.3	13.8	16.8	20.0
For each 100 beveled square washers add	23.1	22.4	21.0	20.2	19.2	34.0	31.6		• •
This ta	ble confor	ms to we	ight stand	ards adop	ted by th	e Industr	ial Faster	ners Insti	tute,